A New Histogram-based Technique for Compressing Multi-Dimensional Data
نویسندگان
چکیده
The need to compress data into synopses of summarized information often arises in many application scenarios, where the aim is to retrieve aggregate data efficiently, possibly trading off the computational efficiency with the accuracy of the estimation. A widely used approach for summarizing multidimensional data is the histogram-based representation scheme, which consists in partitioning the data domain into a number of blocks (called buckets), and then storing summary information for each block. In this paper, a new histogram-based summarization technique which is very effective for multi-dimensional data is proposed. This technique exploits a multi-resolution organization of summary data, on which an efficient physical representation model is defined. The adoption of this representation model (based on a hierarchical organization of the buckets) enables some storage space to be saved w.r.t. traditional histograms, which can be invested to obtain finer grain blocks, thus approximating data with more detail.
منابع مشابه
Hierarchical Binary Histograms for Summarizing Multi-Dimensional Data
The need to compress data into synopses of summarized information often arises in many application scenarios, where the aim is to retrieve aggregate data efficiently, possibly trading off the computational efficiency with the accuracy of the estimation. A widely used approach for summarizing multi-dimensional data is the histogram-based representation scheme, which consists in partitioning the ...
متن کاملMulti - Method Dispatch Using Multiple
Multiple Row Displacement (MRD) is a new dispatch technique for multi-method languages. It is based on compressing an n-dimensional table using an extension of the single-receiver row displacement mechanism. This paper presents the new algorithm and provides experimental results that compare it with implementations of existing techniques: compressed n-dimensional tables, look-up automata and si...
متن کاملDensity-Based Histogram Partitioning and Local Equalization for Contrast Enhancement of Images
Histogram Equalization technique is one of the basic methods in image contrast enhancement. Using this method, in the case of images with uniform gray levels (with narrow histogram), causes loss of image detail and the natural look of the image. To overcome this problem and to have a better image contrast enhancement, a new two-step method was proposed. In the first step, the image histogram is...
متن کاملDigitHist: a Histogram-Based Data Summary with Tight Error Bounds
We propose DigitHist, a histogram summary for selectivity estimation on multi-dimensional data with tight error bounds. By combining multi-dimensional and one-dimensional histograms along regular grids of different resolutions, DigitHist provides an accurate and reliable histogram approach for multi-dimensional data. To achieve a compact summary, we use a sparse representation combined with a n...
متن کاملINTUITIONISTIC FUZZY DIMENSIONAL ANALYSIS FOR MULTI-CRITERIA DECISION MAKING
Dimensional analysis, for multi-criteria decision making, is a mathematical method that includes diverse heterogeneous criteria into a single dimensionless index. Dimensional Analysis, in its current definition, presents the drawback to manipulate fuzzy information commonly presented in a multi-criteria decision making problem. To overcome such limitation, we propose two dimensional analysis ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004